DEPARTMENT OF MATHEMATICS
SCHOOL OF MATHEMATICAL SCIENCES
NORTH MAHARASHTRA UNIVERSITY, JALGAON

SYLLABUS FOR

M. Sc. I (Mathematics)
(with Specialization in Computational Mathematics)

WITH EFFECT FROM
ACADEMIC YEAR 2016-2017
DEPARTMENT OF MATHEMATICS
SCHOOL OF MATHEMATICAL SCIENCES
NORTH MAHARASHTRA UNIVERSITY, JALGAON

Syllabus for M.Sc. I Mathematics (with Specialization in Computational Mathematics)
Syllabus Structure

Semester-I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title of the Course</th>
<th>Contact hours/week</th>
<th>Distribution of Marks for Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Th (L) Pr Total</td>
<td>Internal Th Pr</td>
</tr>
<tr>
<td>MT-101</td>
<td>Real Analysis</td>
<td>04 -- 04</td>
<td>40 -- 60</td>
</tr>
<tr>
<td>MT-102</td>
<td>Topology</td>
<td>04 -- 04</td>
<td>40 -- 60</td>
</tr>
<tr>
<td>MT-103</td>
<td>Linear Algebra</td>
<td>04 -- 04</td>
<td>40 -- 60</td>
</tr>
<tr>
<td>MT-104</td>
<td>Abstract Algebra</td>
<td>04 -- 04</td>
<td>40 -- 60</td>
</tr>
<tr>
<td>MT-105</td>
<td>Programming in C++</td>
<td>04 06 10</td>
<td>-- 40 --</td>
</tr>
</tbody>
</table>

Semester-II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title of the Course</th>
<th>Contact hours / week</th>
<th>Distribution of Marks for Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Th (L) Pr Total</td>
<td>Internal Th Pr</td>
</tr>
<tr>
<td>MT-201</td>
<td>Complex Analysis</td>
<td>04 -- 04</td>
<td>40 -- 60</td>
</tr>
<tr>
<td>MT-202</td>
<td>Measure and Integration Theory</td>
<td>04 -- 04</td>
<td>40 -- 60</td>
</tr>
<tr>
<td>MT-203</td>
<td>Ordinary Differential Equations</td>
<td>04 -- 04</td>
<td>40 -- 60</td>
</tr>
<tr>
<td>MT-204</td>
<td>Advanced Abstract Algebra</td>
<td>04 -- 04</td>
<td>40 -- 60</td>
</tr>
<tr>
<td>MT-205</td>
<td>Numerical Methods with C++</td>
<td>04 06 10</td>
<td>-- 40 --</td>
</tr>
</tbody>
</table>

Th: Theory **Pr:** Practicals/Project **L:** Lectures
MT-101: - Real Analysis

Unit I: The Riemann-Stieltjes Integral
Definition and Existence of the integral, Properties of integral, Integration and differentiation, Integration of vector-valued functions, Rectifiable curves. [Chapter 6 [1]] [10 Lectures]

Unit II: Sequences and Series of functions

Unit III: Power Series
Uniqueness theorem for power series, Abel’s limit theorem, Taubers first theorem. [Chapter 8[1] (8.1 to 8.4) & Chapter 9[2] (9.23)] [10 Lectures]

Unit IV: Functions of Several Variables
Linear transformations, Differentiation, The contraction principle, The inverse function theorem, The implicit function theorem. [Chapter 9[1]] [20 Lectures]

Recommended Text Books:

Reference Books:
MT-102: Topology

Unit I. Topological spaces:

Unit II: Continuous Functions:

Unit III: Connectedness:
Connected Spaces, Components and Local Connectedness [Chapter 3 [1] (Art. 23, 25)] [10 Lectures]

Unit IV: Compactness:
Compact Spaces, Compact Subspaces of the Real Line, Limit Point Compactness, Local Compactness [Chapter 3 [1] (Art. 26-29)] [10 Lectures]

Unit V. Countability and Separation Axioms

Recommended Textbooks:

Reference Books:
MT-103: Linear Algebra

Unit I: Vector Spaces and Modules
 Elementary Basic Concepts, Linear Independence and Bases, Dual Spaces, Inner Product Spaces, Modules. [Chapter 4 [1] (Art. 4.1-4.5)] [20 Lectures]

Unit II: Linear Transformations
 The Algebra of Linear Transformations, Characteristics Roots, Matrices, Canonical Forms. [Chapter 6 [1] (Art. 6.1-6.7)] [25 Lectures]

Unit II: Determinants and Types of Linear Transformations
 Trace and Transpose, determinants, Hermitian, Unitary and Normal Transformations, Real Quadratic Forms. [Chapter 6 [1] (Art. 6.8-6.11)] [15 Lectures]

Recommended Text Books:

Reference Books:
MT-104: Abstract Algebra

Unit I: Groups:
(Prerequisites: Groups and Subgroups, Homomorphisms and Cosets). Direct Product, Conjugate Classes, Sylow’s theorems its applications, p-Sylow subgroups, Normal and subnormal series, Jordan Holder theorem, Solvable groups. [Chapter 1 [1] (Article 1.10-1.14)] [30 Lectures]

Unit II: Rings:
(Prerequisites: Rings and subrings, Examples of rings, types of rings and characteristic of a ring). Euclidean domain, Principal Ideal Domain, Unique Factorization Domain Polynomial rings, Roots of Polynomials, Factorization of Polynomials. [Chapter 2 [1] (Article 2.10-16] [30 Lectures]

Recommended Text Books:

Reference Books:
MT-105: Programming in C++

Unit I: Beginning with C++

Unit II: C++ Tokens, Expressions and Control Structure.
 Tokens, C++ keywords, Basic Data Types, User-defined Data Types, Derived Data Types, Operators in C++, Reference Variables, Memory management operators, Manipulators, Operator Overloading, Operator Precedence, Control Structure. [Chapter 3 [1] (Article 3.1-3.25)] [15 Lectures]

Unit III: Functions in C++
 Different forms of functions, Function prototyping, Call by Reference, Inline Functions, Function overloading, Friend and virtual functions, Math library functions. [Chapter 4 [1] (Article 4.1-4.12)] [10 Lectures]

Unit IV: Classes and Objects
 C Structure revision, Defining classes, Defining member functions, Declaration of objects to class, Access to member variables from objects, Different forms of member functions dependence on access specifiers (i.e. Private, public, protected), Array of objects, Objects as function arguments, Friendly function, Returning objects, Pointers to members, Local classes. [Chapter 5 [1] (Article 5.1-5.19)] [15 Lectures]

Unit V: Pointers, Virtual Functions and Polymorphism
 Pointers, Pointers to objects, This pointer, Pointers to derived class, Virtual functions, pure virtual functions. [Chapter 9 [1] (Article 9.1-9.8)] [10 Lectures]

Recommended Text Books:

Reference Books:
List of C++ Programs for MT-105

1. C++ Program to find perfect number.
2. C++ Program to find prime number in C++.
3. C++ Program to find prime number between a range.
4. Program Take Hours, Minutes, Seconds And Print It In 24 Hours & 12 Hours Format.
5. Program to convert the given temperature from Fahrenheit to degree Celsius.
6. Program to find greatest number between 3 number using if-else-if statements.
7. C++ program to find factorial of number in C++.
8. C++ Program to find table of a given number using for loop.
9. C++ Program to convert decimal number to binary number.
10. C++ Program to find the area and perimeter of rectangle.
11. C++ Program to find the area of triangle.
12. C++ program to calculate area of circle.
13. C++ Program to swap the values of two integers.
14. C++ Program to swap two variables without using third variable or temporary variable.
15. C++ Program to find the last prime number before number entered.
16. C++ Program to find Fibonacci series with simple logic.
17. C++ program to swap two numbers using built in swap function in C++ standard library.
18. Find Palindrome Number in C++.
19. Find Armstrong Number in C++ code with logic explanation and code dry run.
20. Print a right angle triangle using for loop.
21. Find GCD of two numbers.
22. C++ program to reverse a Number.
23. Switch statement example in C++ to calculate grade points when user enter a grade.
24. C++ program to check entered character is small, capital, digit or a special character.
25. Maximum or Largest Number in Array C++ Code.
26. Maximum and Minimum Number in array C++ code array should be initialized randomly.
27. Factorial of a number using recursive function simple example.
28. Add two matrix in C++ code using 2D arrays.
29. Matrix multiplication code in C++ using 2D arrays.
30. Different ways to pass an array to a function.
31. C++ program to convert binary number to decimal number.
32. C++ pointer example pass by reference.
33. Find Transpose of a matrix in C++ Code and check symmetric or not.
34. Count numbers of vowels in string C++ source code.
MT-201: Complex Analysis

Unit I: Elementary Properties and Examples of Analytic Functions

Power series, Analytic functions, Analytic functions as mappings, Mobius transformations [Chapter 3 [1], (Art 1-3)] [15 Lectures]

Unit II: Complex Integration

Riemann-Stieltjes integrals, Power series representation of analytic functions, Zeros of an analytic function, The index of a closed curve, Cauchy's Theorem and Integral Formula, Counting zeros; the Open Mapping Theorem, Goursat’s Theorem.

[Chapter 4 [1], (Art 1-5, 7-8)] [25 Lectures]

Unit-III Singularities

Classification of singularities, Laurent Series Development, Residues, The Argument Principle. [Chapter 5 [1], (Art 1-3)] [15 Lectures]

Unit-IV: The Maximum Modulus Theorem

The Maximum Principle, Schwarz's Lemma. [Chapter 6 [1], (Art 1-2)] [05 Lectures]

Recommended Text Books:

Reference Books:

MT-202: Measure and Integration Theory

Unit I: Lebesgue Measure
Algebra of Sets, Lebesgue Outer Measure, The σ-Algebra of Lebesgue Measurable Sets, Outer and Inner Approximation of Lebesgue Measurable Sets, Countable Additivity, Continuity and the Borel-Cantelli Lemma, Non-measurable Sets, The Cantor Set and the Cantor-Lebesgue Function. {Chapter 2 [1], (Art. 2.1-2.7)} [15 Lectures]

Unit-II: Lebesgue Measurable Functions
Sums, Products, and Compositions, Sequential Pointwise Limits and Simple Approximation, Littlewood's Three Principles, Egoroff's Theorem, and Lusin's Theorem {Chapter 3 [1], (Art. 3.1-3.3)} [10 Lectures]

Unit-III: Lebesgue Integration
The Riemann Integral, The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure, The Lebesgue Integral of a Measurable Nonnegative Function, The General Lebesgue Integral, Countable Additivity and Continuity of Integration, Uniform Integrability: The Vitali Convergence Theorem. {Chapter 4 [1], (Art. 4.1-4.6)} [15 Lectures]

Unit-IV: Differentiation and Integration
Continuity of Monotone Functions, Differentiability of Monotone Functions: Lebesgue's Theorem, Functions of Bounded Variation: Jordan's Theorem, Absolutely Continuous Functions, Integrating Derivatives: Differentiating Indefinite Integrals, Convex Functions. {Chapter 6 [1], (Art. 6.1-6.6)} [10 Lectures]

Unit-V: The L^p Spaces
Completeness and Approximation, Normed Linear Spaces, The Inequalities of Young, Holder, and Minkowski, L^p Is Complete: The Riesz-Fischer Theorem. {Chapter 7 [1], (Art. 7.1-7.3)} [10 Lectures]

Recommended Text Books:

Reference Books:
Unit I: System of Linear Differential Equations:
Systems of first order equations, Model for arms competition between two nations, Existence and uniqueness theorem, Fundamental matrix, Non-homogeneous linear systems, Linear systems with constant coefficients, Linear systems with periodic coefficients. [Chapter 4 [1], (Art. 4.1-4.8)] [15 Lectures]

Unit II: Existence and Uniqueness of Solutions:
Successive approximations, Picard’s theorem, Continuation and dependence on initial conditions, Existence of solutions in the large, Existence and uniqueness of solutions of systems, Fixed point method. [Chapter 5 [1], (Art. 5.1-5.9)] [15 Lectures]

Unit III: Boundary Value Problems:
Sturm-Liouville problem, Green’s function, Application of boundary value problems (BVP), Picard’s theorem. [Chapter 7 [1], (Art. 7.7.5)] [10 Lectures]

Unit IV: Oscillations of Second Order Equations:
Fundamental results, Sturm’s comparison theorem, Elementary linear oscillations, Comparison theorem of Hille-Winter, Oscillations of $x''+a(t)x = 0$. [Chapter 8 [1], (Art. 8.1-8.5)] [10 Lectures]

Unit V: Stability of Linear and Nonlinear Systems:
Elementary critical points, System of equations with constant coefficients, Linear equation with constant coefficients. [Chapter 9 [1], (Art. 9.1-9.4)] [10 Lectures]

Recommended Text Books:

Reference Books:
MT-204: Advanced Abstract Algebra

Unit I: Field Extensions
Extension Fields, The Transcendence of e, Roots of polynomials, Construction with Straight Edge and Compass, More about roots. (Chapter 5 [1], Art.1-5) [20 Lectures]

Unit II: Galois Theory
Elements of Galois Theory, Solvability by Radicals, Finite Fields. (Chapter 5 [1], Art.6-7) and Chapter 7 [1], Art. 1 [20 Lectures]

Unit III: Structure of Finite Fields
Characterization of finite fields, Roots of irreducible polynomials, Traces, Norms and Bases, Roots of unity and cyclotomic polynomials, Representation of elements of finite fields. (Chapter 2 [2], Art.1-5) [20 Lectures]

Recommended Text Books:

Reference Books:
MT-205: Numerical Analysis with C++

Unit I: Solution of Algebraic and Transcendental Equations
Bisection Method, Iteration Method, Method of False Position, Newton-Raphson Method, Ramanujan’s Method, Muller’s Method. [Chapter 2 [1], Art. 2.1-2.7], [12 Lectures]

Unit II: Interpolation
Errors in Polynomial Interpolation, Finite Differences, Detection of Errors by use of Difference Tables, Differences of a Polynomial, Newton’s formulae for Interpolation, Central Difference, Interpolation with unevenly spaced points, Divided differences. [Chapter 3 [1], (Art. 3.1-3.7, 3.9, 3.11)], [12 Lectures]

Unit III: Numerical Differentiation and Integration
Numerical Differentiation, Maximum and Minimum values of a Tabulated Function, Numerical Integration. [Chapter 5 [1], (Art. 5.1-5.4)], [12 Lectures]

Unit IV: Matrices and Linear systems of Equations
Basic Definitions, Solution of Linear Systems-Direct Methods, Solution of Linear Systems-Iterative Methods, Eigenvalue Problem. [Chapter 6 [1], (Art. 6.1-6.5)], [12 Lectures]

Unit V: Numerical Solutions of Ordinary Differential Equations
Solution by Taylor’s Series, Picard’s Method of Successive approximations, Euler’s Method, Runge-Kutta methods, Predictor Corrector methods. [Chapter 7 [1], (Art. 7.1-7.6)], [12 Lectures]

Recommended Text Books:

Reference Books:
List of C++ Programs for MT-205

1. Simple Bisection method
 2. Bisection with tests for convergence
 3. Recursive solution for Bisection
 4. Newton's method
 5. Secant Method
 6. Polynomial interpolation
 7. Estimating Derivatives
 8. Regula – Falsi method
 9. Muller method
10. Gauss elimination method
11. Gauss-Seidal method
12. Gauss-Jacobi method
13. Power method
14. Euler method
15. Runge-Kutta second order method
16. Runge-Kutta fourth order method
17. Trapezoidal rule
18. Simpson’s 1/3rd rule
19. Simpson’s 3/8th rule